Q-40

The Effectiveness of Four Direct Search Optimization Algorithms

Randall W, Rhea

President

Circuit Busters, Inc.
1750 Mountain Glen

Stone Mountain, GA 30087

ABSTRACT

Effective computer circuit simulation programs

require efficient optimization routines. This
paper describes four different direct search
routines [1] beginning with a simple random
direct search and concluding with the
presented algorithm. The four routines are
tested on three different circuits using the
same computer circuit simulation program, so
that conclusions may be drawn as to the
relative effectiveness of each routine.

INTRODUCTION

An efficient optimization routine (1) causes the

greatest reduction of the objective function with

the fewest evaluations of the circuit function, (2)
is immune to behavior of the circuit which tends to
reduce effectiveness, (3) is tolerant of weights of
specified parameters in the objective function, and
(4) requires a minimum of computer code and memory.

OBJECTIVE FUNCTION

The objective function used in the simulation

program is least square.

koMo O
YN > 2
Frror =/ bl L W (S =Ty 1) /(n-m)| (1)
e — 11 VVIE TR
1=1| f=m i= ! ' !
where 1 = optimization frequency band 1 to k.
f = frequency point m ton .
i = parameter being optimized.
Wil = weight for parameter i in band 1.
Ti\] = target for parameter i in band 1.
SL{ = value of parameter i at frequency f.

0149-645X/87/0000-0697$01.00 © 1987 IEEE

697

Principal Engineer
Scientific~Atlanta, Inc.
3845 Pleasantdale Road
Atlanta, GA 30340

CIRCUIT EVALUATION ROUTINE

Evaluation of the objective function requires the
computation of Sjf . The parameters used were
scattering parameters (S~parameters). The computer
program used to determine the S-parameters was

SuperStar, version 2.1, by Circuit Busters, Inc.
Each optimization routine evaluated was inserted
into this program. Using the same computational
routine to evaluate each optimization algorithm is

essential in determining the relative effectiveness

of each routine.

SuperStar is a general purpose circuit simulation
and optimization program. It was written in IBM
BASICA 3.0 and compiled with Microway 87Basic and

87Basic/Inline.
executes faster

The code produced by this compiler
than code from efficient Fortran
compilers [2]. The three circuit examples in this
paper use the cascaded ABCD parameter facilities of
SuperStar. No matrix manipulations are required in
this mode. The times presented in this paper
include the time required to graphically present the
results ian S-parameter form at intermediate
optimization iterations. This overhead penalizes
slightly the times of the faster, more efficient
algorithms relative to the slower routines.

The objective function evaluation routine in
SuperStar allows multiple frequency bands and use of
inequalities. The desired targets, and their
weights, are included in the ASCII file which also
describes the circuit to be optimized.

The program was run on an IBM PC with a 4.77 MHz
clock and an 8087 floating point coprocessor. The
final algorithm presented in this paper is the

optimization algorithm used in SuperStar.

DIRECT SEARCH ROUTINES

A study of the three preliminary and the presented
algorithm was done first on a low-pass filter. The
algorithms were (1) a simple random search, (2) a
simple pattern search, (3) added adaptive step size

to the pattern search and (4) added quadratic
estimation of the element value to the third
algorithm.

1987 1IEEE MTT-S Digest

LOW-PASS FILTER

The first circuit chosen to evaluate the
optimization algorithms was a three element-T 1dB
passband ripple Chebyshev low-pass filter. This
circuit was chosen because 1) the exact solution is

known and 2) only two unique element values are
involved, so the error contours versus element
values can be plotted in two dimeunsions,

The filter has a 3dB cutoff frequency of 1GHz. The
attenuation is 13.41dB at 1.5GHz. A load and source
impedance of 50 ohms is used. The exact solution is
16.104nH for the two series inductors and 3.1643pF
for the shunt capacitor,

Error contours of 1E-6, 1E-5, 1E-4 and 1E-3 versus
element values are given in Fig.l. These contours
result from declaring that the insertion loss be
less than 1dB from O to 1000MHz and greater than
13.41dB at 1500MHz and higher.
every 100MHz was used.

A frequency point

z2e

18

18

17

16

SERIES INDUCTRNCE (nH)>

13

12 T T
2.

T T T T T
2.75 3.8 3.25 3.5 3.

SHUNT CRPACITANCE (pF)>

S 75

FIG.1. Error contours for a low-pass filter.

RANDOM SEARCH

The first algorithm was a random direct search [3].
Each element, in order, is stepped down and up a
specified percentage. The circuit and error are
evaluated for each case. The element value, of
these three, with the lowest error is the new
element value. The process is repeated with the
next element. When all elements have been adjusted,
the process repeats with the first element.

698

Two
capacitor were evaluated.
error contour, however, one set was near the valley
of the contours while the second was orthogonal to
the valley. The evaluation was done for several
step size percentages.

initial starting locations for the inductor and
Both were near the 1E-3

Results of this algorithm evaluated on the low-pass
filter are given in Fig.2, The time to reach an
error of 1E-6 or less is given. Also given (in
parenthesis) 1is the minimum error achieved by the
routine., The term "hang" signifies that the routine
never achieved a minimum error of 1E-6 or less.

conclusions may be drawn from the
results, First, a small step size was required to
avoid hang., A step size larger than 1% hung. This
is because certain element values within 1% of the
exact values result in an error greater than 1E-6.

Interesting

Second, the starting point was extremely important.
Starting near the valley was unfortunate. A step
size of ,1257 or less was required to avoid hang.

TIME TO ERROR=1E-6
INITIAL C(MINIMUM ERROR)D
STEP 3 ELEMENT LOW-PASS FILTER
RLGORITHM | SI2E 14nH, 2.8pF | 13nH, 3.8pF
RANDON 16% HANG (4.8E-5)| HANG (8.9E-4)
RANDOM 4% HANG (4.2E-6)| HANG ¢(8.8E-4)
RANDON 1% 86s HANG (2.4E~-5)>
RANDOHM . 257 336s HANG (2.3E-6)
PATTERN 16% HANG (Y4,8E-S)| HANG
PATTERN 4y HANG (4, 2E-8)| HANG
PATTERN 1% 86s HANG (2.4E-5)
PATTERN .25% 333s HANG (2.3E-6)
ADAPTIVE 16% 15s 419s
ADAPTIVE 4 30s 417s
ADAPTIVE 1% 87s 384s
FULL 16% 15s 479s
FULL Y 21s 481s
FULL 1% S1s 445g
FIG.2. Results of the algorithms on the filter.

PATTERN SEARCH

In this algorithm, each element is stepped down and

up and the errors are recorded. Only the element
with the best error reduction is permanently
changed. This process repeats by again searching

This
in

for the element with the best error reduction,
algorithm therefore attempts to align the search
an optimum direction [4].

Results of the pattern search algorithm on the low-
pass filter are given in Fig.2. The results were
disappointing. The tendency to hang and the need
for small step size remained. Furthermore, time to
1E-6 was actually slightly increased. However,
results with a second example later will show the
pattern search was better than the random search.

An obvious tendency is apparent from the results
with the random and pattern search algorithms.
Larger step sizes converge more quickly, but
increase the likelihood of hang. It is probably
safe to assume that different circuits will have
different threshold step sizes to avoid hang, which
makes determination of an appropriate step size
extremely difficult., The only safe approach to
avoiding hang is to make the step size small, which
results in long convergence time.

ADAPTIVE STEP SIZE

To overcome this difficulty, adaptive step size was
added to the pattern search algorithm. In this
algorithm, optimization begins with a large initial
step size, for example 167Z. The pattern search
algorithm is begun, with a step down being the
element value divided by 1.16 and a step up being
the value multiplied by 1.16.

When all elements have been optimized to the point
that stepping any element down or up by 1.16 doesn't
reduce the error, the step size is reduced. This
particular algorithm reduces the step size to the
fourth root of 1.16 or 1.0378. The pattern search
is repeated with the lower step size. The step size
is reduced again when no step of an element results
in a reduced error. This process continues until
the step size reaches a specified lower 1limit, and
program execution is terminated. The lower limit
was set at .027 for these tests and in the program
SuperStar.

Results of the adaptive step size algorithm on the
low-pass filter are given in Fig.2. Results were
gratifying. Optimization converged to less than 1E-
6, even with an initial step size of 16%.

FULL ALGORITHM

The final algorithm adds quadratic estimation of an
element value to the adaptive step size algorithm
[5]. After a pattern search identifies the element
which produces the greatest error reduction, the
value of that element which would produce the lowest
error is estimated by fitting a quadratic to the
stepped down, initial and stepped up values of the
element.

A flow chart of the full algorithm is given in
Fig.3. Results of this algorithm on the low-pass
filter are given in Fig.2.

Convergence time for the fortunate starting element
values were reduced. Times were somewhat greater
for the unfortunate starting values. However, it
will be shown that quadratic estimation gave
significant improvement for the other two circuit
examples.

699

FIND ERROR
AT BASE VALUE
Em=THIS ERROR

]

7 L
ECall J> = EM

FIND
Ed(J> & EuCdD

IF EdCJIXCEu(J) |Yes
THEN EM=Ed(J)D
ELSE EM=Eu(J)

N No

Je

n
C
|

REBUCE STEP Yes
SIZE, R Jo = o7

COMPUTE
UeCJ0O>
& Ee(Jde>

IF EdCJBI<EuCJIB)yesg

FIG.3.

THEN U=U/R
ELSE U=Ux%R
No
EM=Ee(J0>
UCJ0>=UeCJOD
E(J) error at variable base value.

noa

Ed(J)

Eu(J)
Ee(JO)
JM

Jo

R

it

U =
Ue(JO)=

error with variable J multiplied
by R.

error with variable J divided by R.
error at estimated variable value.
number of variables being optimized.
variable with greatest error
reduction.

ratio by which a variable is
multiplied or divided.

variable base value.

estimated value of variable,

Flow diagram for the full algorithm.

STARTING VALUES

The starting values of the elements in this example
have a profound effect on the optimization time.
The reason for this is readily understood by
examination of the error contours in Fig.l. The
valley of the error contours for this example
doesn't align with either variable. In fact, it is
at nearly a 45 degree angle to both axis. When
starting very near the valley, even a small step in
any direction for either variable results in an
error greater than the starting values. Therefore,
programs with fixed step size algorithms may hang at
the first iteration, or soon thereafter if values
happen very near the valley, With adaptive step
size, the algorithm immediately steps down to a size
sufficiently small to avoid hang, and then must
transverse the distance to minimum error with very
small step size,

The 1latter type of algorithm is prefered. It may
take a long time, but at least it is much more
likely to reach the optimum values.

Gupta, et al [5], gives an algorithm based on work
by Rosenbrock [6] for rotating coordinates such that
the search is aligned along the valley. This
probably could be a basis for improving the
algorithm presented here.

COMPUTING THE QUADRATIC ESTIMATE

Reference
estimation

[5] includes an algorithm for quadratic
of the minimum error value of a circuit
variable., This routine is based on arithmatic delta
steps from the base variable value. If geometric
steps are used, (the base value is multiplied and
divided by a ratio, "R") then the algorithm is
simpler. The value of a variable, Xe, which is
estimated to result in the Ilowest error is

calculated by assuming the error curve is quadratic
in the area of the base value.
R°*¥Ed - (R+R°)*E + R*Eu
A = R (2)
(R3—R —R+1)x°
E - Fu + A%(R' X’ - x?)
B = - S (3)
X*(1 - R)
Xe = ~B/2A (4)
where E = error at base value of variable
Ed = error at base value/R
Eu = error at base value*R
X = variable base value
Xe = estimated min error value

700

PARAMETER WEIGHTS

The parameters of the objective function for a
passive circuit, such as the low-pass filter
example, range from wunity (no loss) to zero (no
transmission). In the general optimization problem,
there may be a wide varience in the target
parameters or in one target parameter for different
frequency bands. So that all parameters contribute
adequately to the objective function, weights for
the parameters (Wil), which may be different for
each frequency band, are allowed.

Because the weights are selected by the user, who
can only estimate appropriate values, the algorithm
should be tolerant of the selected values.

The full algorithm was tested on the low-pass filter
with three sets of selected weights. Results are
given in Fig.4. In case I, SuperStar default
weights of unity were selected. 1In case 1II, the
inverse of the target S-parameters were selected;
1.122 for the passband and 4.683 for the stopband.
This 1is a natural choice, because it tends to
balance the effect on the objective function of the
pass and stop bands. In case III, the pass and stop
band weights of case IT are reversed, This 1is
probably an exceptionally poor choice, because the
passband parameter is overly significant.

The results indicate reasonable tolerance to weight
selections, In some cases slightly longer
optimization times resulted, in other cases improved
times resulted. Undesirable results were only noted
with the poor choice of weights in combination with
the unfortunate starting values.

Weights can have two different effects on the
optimization problem. When an exact solution exists
(most likely if conditionals are used) weights tend
to effect only optimization time. When an exact
solution doesn't exist, weights effect the final
values. For example, if the passband is given a
high weight, passband requirements tend to determine
the outcome, and other targets are missed further.

TIME TO ERROR=1E-B
INITIAL or (MINIMUM ERROR?
CASES STEP 3 ELEMENT LOW-PASS FILTER
SI1ZE 14nH, 2.8pF 13nH, 3.8pF
CASE 1 18% 15 s 479 s
CASE I 4% 2l s 481 s
CASE 1 1% 51 s 445 s
CASE I1 16% 15 s 523 s
CASE 11 4% 26 s 266 s
CASE 11 14 Tl s 297 s
CASE 111 16% 38 s (e.1E-6)>
CASE III ¥4 26 s (1.8E-6>
CASE III 1% 48 s (2.6E-6)
FIG.4. Filter results using different weights.

TRANSISTOR AMPLIFIER

The second circuit example is given in Fig.5. It is
a broadband bipolar amplifier with distributed
element matching and feedback [7]. The final values
depend somewhat on the start step size and the
algorithm being tested. The final values given in
Fig.5 were program outputs at automatic termination
using the full algorithm, with an initial step size
of 16%. The starting values and optimization targets
are given in the SuperStar circuit file, Fig.6. The
targets were 10 dB S21 (forward gain) and best
possible match from 500 to 1500 MHz,

Results of the optimization are given in Fig.7 for
all four algorithms with initial step sizes of 16%,
47 and 17.

GG

253

5.45nH

FIG.5. Transistor amplifier schematic.

Optimized values are shown.

DELAY NETWORK

In Fig.8 is the schematic and SuperStar circuit file

for a seven element Bessel low-pass filter with a
cutoff frequency of 1 MHz.

This circuit was the starting point for a delay
network with desired characteristics after

optimization of (1) delay of 500nS up to 1 MHz, (2)
insertion loss less than 1dB up to 1 MHz and (3)
equal inductor values.

Before optimization, the delay is approximately
480nS. The inductor values of the original Bessel
prototype are significantly different from each
other. For the optimization starting point, all
inductors were set equal to each other with a value
of 5500nH.

Results of optimization are given in Fig.7 for all
four algorithms with initial step sizes of 16%, 4%
and 1%,

CIRCUIT
CAP AA PA 22

IND BB SE 72

RES CC PA 550

TWO DD SP 50 'NEC645.S2P

RES EE PA 300

PRC FF PA 76 72

SRL GG SE ?180 ?16

SER DD FF

PAR DD GG

CAX AA EE

OUTPUT

DSP AA SD 50

FREQ

SWP 500 1500 11

OPT

500 1500 $21=10 W21=2 S11<-100 $22<-100

The NEC645.S2P data file is:

200 .50 -75 22.5 145 ,02 58 .78 -20

500 .55 -118 12.6 112 .03 52 .53 -28

1000 .55 -158 8.6 97 .04 54 .44 -31

1500 .45 -178 6.0 86 .05 59 .40 -31
FIG.6. Amplifier circuit file.
are shown.

Starting values

For both the amplifier and delay network examples,
the starting values were far from the optimium
values. In some cases, the starting values were off
by more than a factor of two. In spite of this,
optimization times for the full algorithm were
short, in contrast to significant hang and long
time problems with the random algorithm.

INITIAL TIME TO TIME TO
STEP ERROR:=1E-1 ERROR=1E-3
ALGORITHM SIZ2E AMPLIFIER DELAY NETWORK
RANDOM 16% 198s HANG
RANDOM L ¥4 HANG 477s
RANDBOM 1% HANG 1749s
PATTERN 16% THs HANG
PATTERN 4% 265s 606s
PATTERN 1% 1032s 2271s
RDAPTIVE 164 Ts 195s
ADARPTIVE $% 265s 686s
ADAPTIVE 1% 1032s 2271s
FULL 18% STs 89s
FULL Y% 67s 274s
FULL 1% 89s S97s
FIG.7. Amplifier and delay network results.

GPH AA S21 50 -10 O
GPH AA DLY 50 O 1000

.05 .95 S21>-1 DLY=500 WDL=1E-5

FIG.8. Schematic and circuit file for the delay
network. Starting values are in the file.

SUMMARY

The direct random search has severe limitations. 1In
all three cases studied, hang was a prevelent
problem, and optimization time was long. The initial
step size was critical. The minimum errors achieved
after any time were large. Errors could have been
reduced by choosing smaller step sizes, but times
would have been further increased.

The pattern search was somewhat more effective.
Time was slightly increased for the delay network,
but significantly reduced for the amplifier. Very
little effect was observed on the low-pass filter.

The addition of adaptive step size to the pattern
search algorithm was key to the elimination of the
hang problem. No case of hang remained in these
examples with adaptive step size. The fact that no
effect was observed on the amplifier example when
adaptive step size was added is probably because of
the broadband nature of that example; the routine
didn't reduce the step size prior to reaching the
error limit of 0.1.

Most significantly, with adaptive step size, the
user (or computer program) has been relieved of the
responsibility of accurately guessing an appropriate
initial step size.

The addition of quadratic estimation of variables to
the algorithm was a significant improvement for the
amplifier and delay network examples.

The full algorithm presented here, used in the
program SuperStar, has been succesfully applied to a
wide variety of circuit applications.

702

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

J. W. Bandler, "Optimization Methods for
Computer-Aided Design," IEEE Trans. Microwave

Theory and Techniques, vol., MIT-17, pp. 533-552,

August 1969,

S. S. Fried, "The 8087/80287 Performance Curve,
Fall 1985 Byte, Inside the IBM PCs, pp. 67-88.

D, J. Wilde, Optimum Seeking Methods, Englewood
Cliffs, N.J.: Prentice-Hall, 1967.

R. Hooke and T. A. Jeeves, "Direct search
solution of numerical and statistical problems,'
J.ACM, vol. 8, pp. 212-229, April 1961.

K. C. Gupta, R. Garg, R. Chadha, Computer-Aided
Design of Microwave Circuits, Dedham,
Massachusetts: Aertech House, 1981.

H., H. Rosenbrock, "An Automatic Method for
Finding the Greatest or Least Value of a
Function,"” Computer J., vol. 3, pp. 175-184,
October 1960

Touchstone Users Manual, EESof, Westlake
Village, CA., 1986.

