
Q-40
The Effectiveness of Four Direct Search Optimization Algorithms

Randall W. Rhea

President Principal Engineer
Circuit Busters, Inc. Scientific-Atlanta, Inc.
1750 Mountain Glen 3845 Pleasantdale Road
Stone Mountain, GA 30087 Atlanta, GA 30340

CIRCUIT EVALUATION ROUTINE

ABSTRACT

Effective computer circuit simulation programs
require efficient optimization routines. This
paper describes four different direct search
routines [1] beginning with a simple random
direct search and concluding with the
presented algorithm. The four routines are
tested on three different circuits using the
same computer circuit simulation program, so
that conclusions may be drawn as to the
relative effectiveness of each routine.

INTRODUCTION

An efficient optimization routine (1) causes the
greatest reduction of the objective function with
the fewest evaluations of the circuit function, (2)
is immune to behavior of the circuit which tends to
reduce effectiveness, (3) is tolerant of weights of
specified parameters in the objective function, and
(4) requires a minimum of computer code and memory.

OBJECTIVE FUNCTION

The objective function used in the simulation
program is least square.

-k. r...!!, ,_5, 1
J l\

Error =~ I L_ ? Wil(Sif-Ti~)2/(n -m)
J

(1)
1=1 I f=m Y=i ‘ ‘ ‘

where 1 =
f=
i=

Wij =
T~j =
Si” =

optimization frequency band 1 to k.
frequency point m to n .
parameter being optimized.
weight for parameter i in band 1.
target for parameter i in band 1.

value of parameter i at frequency f.

Evaluation of the objective function requires the
computation of Sif . The parameters used were

scattering parameters (S-parameters). The computer

program used to determine the S–parameters was

SuperStar, version 2.1, by Circuit Busters, Inc.

Each optimization routine evaluated was inserted

into this program. Using the same computaticmal

routine to evaluate each optimization algorithm is

essential in determining the relative effectiveness

of each routine.

SuperStar is a general purpose circuit simulation

and optimization program. It was written in IBM

BASICA 3.0 and compiled with Microway 87Basic and

87Basic/Inline. The code produced by this compiler

executes faster than code from efficient Fortran

compilers [2]. The three circuit examples in this

paper uae the cascaded ABCD parameter facilities of
SuperStar. No matrix manipulations are required in

this mode. The times presented in this pnper
include the time required to graphically present the

results in S-parameter form at intermediate

optimization iterations. This overhead penalizes
slightly the times of the faster, more efficient
algorithms relative to the slower routines.

The objective function evaluation routine in

SuperStar allows multiple frequency bands and use of

inequalities. The desired targets, and their

weights, are included in the ASCII file which also

describes the circuit to be optimized.

The program was run on an IBM PC with a 4.77 NHz

clock and an 8087 floating point coprocessor. The

final algorithm presented in this paper is the

optimization algorithm used in SuperStar.

DIRECT SEARCH ROWTINES

A study of the three preliminary and the presented

algorithm was done first on a low-pass filter. The

algorithms were (1) a simple random search, (2) a
simple pattern search, (3) added adaptive step size

to the pattern search and (4) added quadratic

estimation of the element value to the third
algorithm.

697

0149-645 X\87/0000-0697$01 .00 C2 1987 IEEE 1987 IEEE MTT-S Digest

LOW-PASS FILTER

The first circuit chosen to evaluate the

optimization algorithms was a three element-T ldB

passband ripple Chebyshev low-pass filter. This

circuit was chosen because 1) the exact solution ia

known and 2) only two unique element values are

involved, so the error contours versus element

values can be plotted in two dimensions.

The filter has a 3dB cutoff frequency of lGHz. The

attenuation is 13.41dB at 1.5GHz. A load and source

impedance of 50 ohms is used. The exact solution is

16.104nH for the two series inductors and 3.1643pF

for the shunt capacitor.

Error contours of lE-6, lE-5 , lE-4 and lE-3 versus

element valuea are given in Fig.1. These contours

result from declaring that the insertion loss be

less than ldB from O to 1000MHz and greater than

lJ.41a~ at l>uumz ana
every 100MHz was used.

. a , . .- . -An.”,

‘ higher. A fre~uency point

20

19

2

FIG.

0 2.25 2.5 2.75 3.@ 3.25 3.5 3.75 *

SHUNT CRPRCITRNCE (pF)

. Error contours for a low-pass filter.

RANDOM SEARCH

The first algorithm was a random direct search [3].
Each element, in order, is stepped down and up a

specified percentage. The circuit and error are

evaluated for each case. The element value, of

these three, with the lowest error is the new

element value. The process is repeated with the

next element. When all elements have been adjusted,

the process repeats with the first element.

Two initial starting locations for the inductor and

capacitor were evaluated. Both were near the lE-3

error contour, however, one set was near the valley

of the contours while the second was orthogonal to

the valley. The evaluation was done for several

step size percentages.

Results of this algorithm evaluated on the low-pass

filter are given in Fig.2. The time to reach an

error of lE-6 or less is given. Alao given (in
parenthesis) is the minimum error achieved by the
routine. The term “hang” aignifiea that the routine

never achieved a minimum error of lE-6 or less.

Interesting conclusions may be drawn from the

results. First, a small step size waa required to

avoid hang. A step size larger than 1% hung. This

is because certain element values within 1% of the

exact values result in an error greater than lE-6.

Second, the starting point was extremely important.

Starting near the valley was unfortunate. A step

size of .125% or leas was required to avoid hang.

RLGORITHM

RRNDOfl
RRNOOM
REINOOII
R!=INOOM

PFITTERN
PRTTERN
PRTTERN
PFITTERN

RO13PTIVE
RORPTIVE
RDRPTIVE

FULL
FULL
FULL

TIME TO ERROR=lE-S
[NITIRL (MINIflUM ERROR)

STEP
SIZE

. 25%

Hf?N~ (~.8E-5)
HFING (+.2E-6>
86s
336s

IHFING (Y.8E-5)
HRNG (+,2E-6)
86s

I 333s

15s
30s
87s

15s
21s
51s

PRSS FILTER

13nH, 3.8PF

HRNG (8.9E-W)
HRNG (8.9E-+)
HRNG (2.+E-5)
HRNG (2.3E-6)

HRNG
HRNG
HRNG (2.+E-5)
HRNG (2.3E-6)

+19s
~17s
38+s

+79s
+81s
+q5s

FIG02. Results of the algorithms on the filter.

PATTERN SEARCH

In this algorithm, each element is stepped down and

UP and the errors are recorded. Only the element

with the best error reduction ia permanently

changed. This process repeats by again searching
for the element with the best error reduction. This

algorithm therefore attempts to align the search in
an optimum direction [4].

Results of the pattern search algorithm on the low-

pass filter are given in Fig.2. The results were

disappointing. The tendency

for small step size remained.

lE–6 was actually slightly

results with a second example

pattern search was better than

to hang and the need
Furthermore, time to

increased. However,

later will show the

the random search.

698

An obvious tendency is apparent from the results

with the random and pattern search algorithms.

Larger step sizes converge more quickly, but

increase the likelihood of hang. It is probably

safe to assume that different circuits will have

different threshold step sizes to avoid hang, which
makes determination of an appropriate step size

extremely difficult. The only safe approach to

avoiding hang ia to make the step size small, which

results in long convergence time.

ADAPTIVE STEP SIZE

To overcome this difficulty, adaptive step size waa

added to the pattern search algorithm. In this

algorithm, optimization begins with a large initial
step size, for example 16%. The pattern search

algorithm is begun, with a step down being the

element value divided by 1.16 and a step up being

the value multiplied by 1.16.

When all elements have been optimized to the point

that stepping any element down or up by 1.16 doesn’t
reduce the error, the step size is reduced. This
particular algorithm reduces the step size to the
fourth root of 1.16 or 1.0378. The pattern search
is repeated with the lower step size. The step size
is reduced again when no step of an element results
in a reduced error. This process continues until
the step size reachea a specified lower limit, and
program execution is terminated. The lower limit
was set at .02% for these tests and in the program
SuperStar.

Results of the adaptive step size algorithm on the
low-pass filter are given in Fig.2. Results were

gratifying. Optimization converged to less than lE-

6, even with sn initial step size of 16%.

FULL ALGORITHM

The final algorithm adds quadratic estimation of an

element value to the adaptive step size algorithm

[5]. After a pattern search identifies the element

which produces the greatest error reduction, the

value of that element which would produce the lowest

error is estimated by fitting a quadratic to the

stepped down, initial and atepped up values of the

element.

A flow chart of the full algorithm is given in

Fig.3. Results of this algorithm on the low-pass
filter are given in Fig.2.

Convergence time for the fortunate starting element

values were reduced. Times were somewhat greater

for the unfortunate starting values. However, it

will be shown that quadratic estimation gave

significant improvement for the other two circuit

exampleao

.

w
r I

EE2-
c1FIND

Ed(J) & E.(J)

Q/
I / \

IF Ed(J)<E.(J) Yes Ed(J) or
THEN EtI=Ed(J) Eu(J) < EMT
ELSE EM=Eu(J)

& 4 No

J8=J

I

REDUCE STEP Yes

COMPUTE
Ue(JO)

& Ee(JO)

I
1

1 I / \

IF Ed(JO)<Eu(JO) yes
THEN U=U/R
ELSE U=U*R

d No

EM=Ee(JO)
U(JO)=Ue(JO)

E(J) =

Ed(J) =

Eu(J) =

Ee(JO)=

JM=

JO =

R .

u=
Ue(JO)=

! I

error at variable base value.

error with variable J multiplied

bv R.

e;ror with variable J divided by R.

error at estimated variable value.

number of variables being optimized.

variable with greatest error
reduction.

ratio by which a variable is

multiplied or divided.
variable base value.

estimated value of variable.

FIG.3. Flow diagram for the full algorithm.

699

STARTING VALUES
PARAMETER WEIGHTS

The starting values of the elements in this example

have a profound effect on the optimization time.

The reason for this is readily understood by
examination of the error contours in Fig.1. The
valley of the error contours for this example
doesn’t align with either variable. In fact, it is
at nearly a 45 degree angle to both axis. When
starting very near the valley, even a small step in
any direction for either variable results in an
error greater than the starting values. Therefore,

programs with fixed step size algorithm may hang at

the first iteration, or soon thereafter if values
happen very near the valley. With adaptive

size, the algorithm immediately steps down to a
sufficiently small to avoid hang, and then

transverse the distance to minimum error with

small step size.

The latter type of algorithm is prefered. It

take a long time, but at least it is much
likely to reach the optimum values.

Gupta, et al [5], gives an algorithm based on
by Rosenbrock [6] for rotating coordinates such

the search is aligned along the valley.
probably could be a basis for improving
algorithm presented here.

step

size
must

very

may
more

work

that

This

the

COMPUTING THE QUADRATIC ESTIMATE

Reference [5] includes an algorithm for quadratic

estimation of the minimum error value of a circuit
variable. This routine is based on arithmetic delta

steps from the base variable value. If geometric

steps are used, (the base value is multiplied and

divided by a ratio, “R”) then the algorithm is
simpler. The value of a variable, Xe, which is

estimated to result in the loweat error is
calculated by assuming the error curve is quadratic

in the area of the base value.

RZ*Ed - (R+Ri)*E + R*Eu

A=

(R3-R*-R+l)*XZ

E - Eu + A*(RZX2 - X2)
B = –—-—–---—-—

X*(1 _ R)

Xe = -B/2A

where E =

Ed =

Eu =

x=
Xe =

error at base

error at base

error at base
variable base

estimated min

value of variable

value/R

value*R

value
error value

(2)

(3)

(4)

The parameters of the objective function for a

passive circuit, such as the low-pass filter

example, range from unity (no loss) to zero (no

transmission). In the general optimization problem,

there may be a wide varience in the target
parameters or in one target parameter for different
frequency bands. So that all parameters contribute

adequately to the objective function, weights for

the parameters (Wi~), which may be different for

each frequency band, are allowed.

Because the weights are selected by the user, who

can only estimate appropriate values, the algorithm

should be tolerant of the selected values.

The full algorithm waa tested on the low-pass filter
with three sets of selected weights. Results are
given in Fig.4. In case I, SuperStar default
weights of unity were selected. In case II, the
inverse of the target S-parameters were selected;
1.122 for the passband and 4.683 for the stopband.
This is a natural choice, because it tends to
balance the effect on the objective function of the
pass and stop bands. In case III, the pass and stop
band weights of case II are reversed. This is
probably an exceptionally poor choice, becauae the
passband parameter is overly significant.

The results indicate reasonable tolerance to weight

selections. In some casea slightly longer

optimization times resulted, in other caaes improved

t~mes resulted. Undesirable results were only-noted
with the poor choice of weights in combination with
the unfortunate starting values.

Weights can have two different effects on the

optimization problem. When an exact solution exists

(most likely if conditional are used) weights tend

to effect only optimization time. When an exact

solution doesn’t exist, weights effect the final

values. For example, if the passband is given a

high weight, passband requirements tend to determine

th= outcome, and other targets are missed further.

CRSES

CFISE I
CflSE I
CRSE I

CRSE II

CRSE 11

CRSE II

C13SE III
CF!SE III
CFISE III

TIME TO ERROR=lE-6
lNITIRL or(NINIHUfl ERROR)

STEP 3 ELEMENT LOW–PRSS FILTER
SIZE l%nH,2.8pF 13nH/3.8pF

I I
16X 15 s 979 s
~z 21 s Y81 s
lZ 51 s ++5 s

16Z 15 s 523 s

~x 26 S 266 S

lx 71 s 297 S

16Z 30 S <2. lE-6>
+x 26 s <1.9E-6)
lx ~6 S (2.6E-6)

FIG.4. Filter results using different weights.

700

TRANSISTOR AMPLIFIER

The second circuit example is given in Fig.5. It is

a broadband bipolar amplifier with distributed

element matching and feedback [7]. The final values

depend somewhat on the start step size and the

algorithm being tested. The final values given in

Fig.5 were program outputs at automatic termination

using the full slgorithm, with an initial step size

of 16%. The starting values and optimization targets

are given in the SuperStar circuit file, Fig.6.
targets were IO dB S21 (forward gain) and

possible match from 500 to 1500 MHz.

Results of the optimization are given in Fig.7

all four algorithms with initial step sizes of
4% and 1%.

GG

The

best

for

16%,

<

BB

RR

I—

—

l-”——
FIG.5. Transistor amplifier schematic.

Optimized values are shown.

DELAY NETWORK

In Fig.8 is the schematic and SuperStar circuit file

for a seven element Bessel low-pass filter with a

cutoff frequency of 1 MHz.

This circuit was the starting point for a delay

network with desired characteristics after
optimization of (1) delay of 500nS up to 1 MHz, (2)
insertion loss less than ldB up to 1 MHz and (3)
equal inductor values.

Before optimization, the delay is approximately
480nS. The inductor values of the original Bessel
prototype are significantly different from each

other. For the optimization starting point, all

inductors were set equal to each other with a value

of 5500nH.

CIRCUIT

CAP AA PA ?2

IND BB SE ?2

RES CC PA 550

TWO DD SP 50 ‘NEC645.S2P

RES EE PA 300
PRC FF PA ?6 ?2
SRL GG SE ?180 ?16
SER DD FF

PAR DD GG

CAX AA EE

OUTPUT

DSP AA SD 50

FREQ

SWP 500 1500 11

OPT

500 1500 S21=1O W21=2 Sll<-loo S22<-100

The NEC645.S2P data file ia:

200 .50 -75 22.5 145 .02 58 .78 -20

500 .55 -118 12.6 112 .03 52 .53 -28

1000 .55 -158 8.6 97 .04 54 .44 -31

1500 .45 -178 6.0 86 .05 59 .40 -31

FIG.6. Amplifier circuit file. Starting values

are shown.

For both the amplifier and delay network examplea,

the starting values were far from the optimium

values. In some cases, the starting values were off

by more than a factor of two. In spite of this,

optimization times for the full alzorithm were. .
short, in contrast to significant hang and long

time problems with the random algorithm.

+LGORITHM

RRNDOPI
RRNDOtl
R13NDOM

PRTTERN
PF!TTERN
PRTTERN

RDflPTIVE
FiDRPTIVE
RORPTIVE

FULL

FULL
FULL

FIG.70 Amplifier an

TIME TO
ERROR=lE-1
RMPLIFIER

198s
HFING
HFING

7+s
265s

1032s

79s
265s

1032s

57s
67s
89s

—
TIPIE TO

ERROR=lE-3
IELRY NETWORK

—

HRNG
?77s

17+9s

HRNG
606s

2271s

195s
606s

2271s

89s
279s
597s

delay network resulta.

Results of optimization are given in Fig.7 for all

four algorithms with initial step sizes of 16%, 4%

and 1%.

701

BB DD=BB FF=BB REFERENCES

>
661O.H

<

FIR
T

cc T EE T GG T
-1- -L L --L-
— — — —

1381PF 252+pF 3Y136PF +78~pF

CIRCUIT

CAP AA PA ?352.1

FIG.8.

IND BB SE ?5500

CAP CC PA ?1671

EQU DD BB

CAP EE PA ?2766
EQU FF BB

CAP GG PA ?7213
CAX AA GG

OUTPUT

GPH AA S21 50-10 0

GPH AA DLY 50 0 1000

FREQ
SWP0121

OPT
.05 .95 S21>-1 DLY=500 WDL=lE-5

Schematic and circuit file for the delay

network. Starting values are in the fiie.

SUMMARY

The direct random search has severe limitations. In

all three caaes studied, hang was a prevelent

problem, and optimization time was long. The initial

step size was critical. The minimum errors achieved

after any time were large. Errors could have been

reduced by choosing smaller step sizes, but times

would have been further increased.

The pattern search was somewhat more effective.

Time was slightly increased for the delay network,

but significantly reduced for the amplifier. Very

little effect was observed on the low-pass filter.

The addition of adaptive step size to the pattern

search algorithm was key to the elimination of the

hang problem. No case of hang remained in these
examples with adaptive step size. The fact that no

effect was observed on the amplifier example when
adaptive step size was added is probably because of

the broadband nature of that example; the routine
didn’t reduce the step size prior to reaching the
error limit of 0.1.

Most significantly, with adaptive step size, the

user (or computer program) has been relieved of the
responsibility of accurately guessing an appropriate

initial step size.

The addition of quadratic estimation of variables to

the algorithm was a significant improvement for the
amplifier and delay network examples.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

J. W. Bandler, “Optimization Methods for
Computer-Aided Design,” IEEE Trans. Microwave

Theory and Techniques, vol. MIT-17, pp. 533-552,

August 1969.

S. S. Fried, “The 8087/80287 Performance Curve,

Fall 1985 Byte, Inside the IBM PCs, pp. 67-88.

D. J. Wilde, Optimum Seeking Methods, Englewood

Cliffs, N.J.: Prentice-Hall, 1967.

R. Hooke and T. A. Jeeves, “Direct search

solution of numerical and statistical problems,”

J.ACM, vol. 8, pp. 212-229, April 1961.

K. C. Gupta, R. Garg, R. Chadha, Computer-Aided

Design of Microwave Circuits, Dedham,

Massachusetts: Aertech House, 1981.

H. H. Rosenbrock, “An Automatic Method for
Finding the Greatest or Least Value of a

Function,” Computer J., vol. 3, pp. 175-184,
October 1960

Touchstone Users Manual, EESof, Westlake
Village, CA., 1986.

The full algorithm presented here, used in the

program SuperStar, has been successfully applied to a
wide variety of circuit applications.

702

